

MTConnect® Standard Part 4.0 – Assets Version 1.3.0

Prepared for: MTConnect Institute

Prepared by: William Sobel

Prepared on: September 30, 2014

MTConnect[®] Specification and Materials

AMT - The Association For Manufacturing Technology ("AMT") owns the copyright in this MTConnect® Specification or Material. AMT grants to you a non-exclusive, non- transferable, revocable, non-sublicensable, fully-paid-up copyright license to reproduce, copy and redistribute this MTConnect® Specification or Material, provided that you may only copy or redistribute the MTConnect® Specification or Material in the form in which you received it, without modifications, and with all copyright notices and other notices and disclaimers contained in the MTConnect® Specification or Material.

If you intend to adopt or implement an MTConnect® Specification or Material in a product, whether hardware, software or firmware, which complies with an MTConnect® Specification, you MUST agree to the MTConnect® Specification Implementer License Agreement ("Implementer License") or to the MTConnect® Intellectual Property Policy and Agreement ("IP Policy"). The Implementer License and IP Policy each sets forth the license terms and other terms of use for MTConnect® Implementers to adopt or implement the MTConnect® Specifications, including certain license rights covering necessary patent claims for that purpose. These materials can be found at www.MTConnect.org, or by contacting Paul Warndorf at mailto:pwarndorf@mtconnect.hyperoffice.com.

MTConnect® Institute and AMT have no responsibility to identify patents, patent claims or patent applications which may relate to or be required to implement a Specification, or to determine the legal validity or scope of any such patent claims brought to their attention. Each MTConnect® Implementer is responsible for securing its own licenses or rights to any patent or other intellectual property rights that may be necessary for such use, and neither AMT nor MTConnect® Institute have any obligation to secure any such rights.

This Material and all MTConnect® Specifications and Materials are provided "as is" and MTConnect® Institute and AMT, and each of their respective members, officers, affiliates, sponsors and agents, make no representation or warranty of any kind relating to these materials or to any implementation of the MTConnect® Specifications or Materials in any product, including, without limitation, any expressed or implied warranty of noninfringement, merchantability, or fitness for particular purpose, or of the accuracy, reliability, or completeness of information contained herein. In no event shall MTConnect® Institute or AMT be liable to any user or implementer of MTConnect® Specifications or Materials for the cost of procuring substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential, indirect, special or punitive damages or other direct damages, whether under contract, tort, warranty or otherwise, arising in any way out of access, use or inability to use the MTConnect® Specification or other MTConnect® Materials, whether or not they had advance notice of the possibility of such damage.

Table of Contents

1	Overview	1
	1 MTConnect® Document Structure	
2	Purpose of This Document	3
2 2	1 Terminology	3 5
3	Extension to Part 1, Overview and Protocol	6
4	Extensions to Part 2, Components and Data Items	7
4	.1 Data Item Types for EVENT Category	7
5	Extensions to Part 3, Streams, Events, Samples, and Condition	7
5	1 Extension to Events section 3.9	8
6	Assets	9
Ap	oendices	10
Α.	Bibliography	10

Table of Figures

Figure	1 · 1 c	eete '	Schema	C
1 iguic	1. /10	octo i	JCIICIIIa	1

1 Overview

1

11 12

13

14 15

16 17

18

21

22

- 2 MTConnect[®] is a standard based on an open protocol for data integration. MTConnect[®] is not
- 3 intended to replace the functionality of existing products, but it strives to enhance the data
- 4 acquisition capabilities of devices and applications and move toward a plug-and-play
- 5 environment to reduce the cost of integration.
- 6 MTConnect[®] is built upon the most prevalent standards in the manufacturing and software
- 7 industry, maximizing the number of tools available for its implementation and providing the
- 8 highest level of interoperability with other standards and tools in these industries.
- 9 To facilitate this level of interoperability, a number of objectives are being met. Foremost is the ability to transfer data via a standard protocol which includes:
 - A device identity (i.e. model number, serial number, calibration data, etc.).
 - The identity of all the independent components of the device.
 - Possibly a device's design characteristics (i.e. axis length, maximum speeds, device thresholds, etc.).
 - Most importantly, data captured in real or near-real-time (i.e. current speed, position data, temperature data, program block, etc.) by a device that can be utilized by other devices or applications (e.g. utilized by maintenance diagnostic systems, management production information systems, CAM products, etc.).

1920 The types

The types of data that may need to be addressed in MTConnect[®] could include:

- Physical and actual device design data
- Measurement or calibration data
- Near-real-time data from the device

23 24

30

- To accommodate the vast amount of different types of devices and information that may come into play, MTConnect[®] will provide a common high-level vocabulary and structure.
- The first version of MTConnect® will focus on a limited set of the characteristics mentioned
- above that were selected based on the fact that they can have an immediate affect on the
- 29 efficiency of operations.

1.1 MTConnect® Document Structure

- 31 The MTConnect[®] specification is subdivided using the following scheme:
- 32 Part 1: Overview and Protocol
- Part 2: Components and Data Items
- Part 3: Streams, Events, Samples, and Condition
- 35 Part 4.0: Assets
- 36 Part 4.1: Cutting Tools

- These four documents are considered the bases of the MTConnect standard. Information applicable to basic machine and device types will be included in these documents. Additional
- parts to the standard will be added to provide information and extensions to the standard focused
- on specific devices, components, or technologies considered requiring separate emphasis. All

- information specific to the topic of each additional part **MUST** be included within that document
- even when it is a subject matter of one of the base parts of the standard.

- Documents will be named (file name convention) as follows:
- 46 MTC_Part_<Number>_<Description>.doc.
- For example, the file name for Part 2 of the standard is MTC_Part_2_Components.doc.
- 48 All documents will be developed in Microsoft® Word format and released in Adobe® PDF
- 49 format.

2 Purpose of This Document

The four base MTConnect® documents are intended to:

52

50

- define the MTConnect® standard;
- specify the requirements for compliance with the MTConnect® standard;
- provide engineers with sufficient information to implement *Agents* for their devices;
- provide developers with the necessary guidelines to use the standard to develop applications.
- Part 1 of the MTConnect Standard provides an overview of the MTConnect Architecture and
- Protocol; including communication, fault tolerance, connectivity, and error handling require-
- 59 ments.
- Part 2 of the MTConnect® standard focuses on the data model and description of the information
- that is available from the device. The descriptive data defines how a piece of equipment should
- be modeled, the structure of the component hierarchy, the names for each component (if
- restricted), and allowable data items for each of the components.
- Part 3 of the MTConnect standard focuses on the data returned from a current or sample
- request (for more information on these requests, see Part 1). This section covers the data
- representing the state of the machine.
- Part 4 of the MTConnect® standard provides a semantic model for entities that are used in the
- manufacturing process, but are not considered to be a device nor a component. These entities are
- defined as MTConnect® Assets. These assets may be removed from a device without detriment
- to the function of the device, and can be associated with other devices during their lifecycle. The
- data associated with these assets will be retrieved from multiple sources that are responsible for
- 72 providing their knowledge of the asset. The first type of asset to be addressed is Tooling.

73 **2.1 Terminology**

- 74 **Adapter** An optional software component that connects the Agent to the Device.
- 75 **Agent** A process that implements the MTConnect[®] HTTP protocol, XML generation,
- and MTConnect protocol.
- 77 **Alarm** An alarm indicates an event that requires attention and indicates a deviation
- from normal operation. Alarms are reported in MTConnect as Condition.
- 79 **Application** A process or set of processes that access the MTConnect[®] *Agent* to perform
- some task.
- Attribute A part of an XML element that provides additional information about that
- 82 XML element. For example, the name XML element of the Device is given
- as <Device name="mill-1">...</Device>
- The text in a simple content element. For example, This is some text,
- in <Message ...>This is some text</Message>.

86 87	Component	A part of a device that can have sub-components and data items. A component is a basic building block of a device.
88 89 90	Controlled Voca	Ibulary The value of an element or attribute is limited to a restricted set of possibilities. Examples of controlled vocabularies are country codes: US, JP, CA, FR, DE, etc
91 92 93	Current	A snapshot request to the <i>Agent</i> to retrieve the current values of all the data items specified in the path parameter. If no path parameter is given, then the values for all components are provided.
94 95	Data Item	A data item provides the descriptive information regarding something that can be collected by the <i>Agent</i> .
96 97 98 99	Device	A piece of equipment capable of performing an operation. A device may be composed of a set of components that provide data to the application. The device is a separate entity with at least one component or data item providing information about the device.
100 101 102	Discovery	Discovery is a service that allows the application to locate <i>Agents</i> for devices in the manufacturing environment. The discovery service is also referred to as the <i>Name Service</i> .
103 104	Event	An event represents a change in state that occurs at a point in time. Note: An event does not occur at predefined frequencies.
105 106	HTTP	Hyper-Text Transport Protocol. The protocol used by all web browsers and web applications.
107 108 109	Instance	When used in software engineering, the word <i>instance</i> is used to define a single physical example of that type. In object-oriented models, there is the class that describes the thing and the instance that is an example of that thing.
110 111 112	LDAP	Lightweight Directory Access Protocol, better known as Active Directory in Microsoft Windows. This protocol provides resource location and contact information in a hierarchal structure.
113 114	MIME	Multipurpose Internet Mail Extensions. A format used for encoding multipart mail and http content with separate sections separated by a fixed boundary.
115 116	Probe	A request to determine the configuration and reporting capabilities of the device.
117 118 119	REST	REpresentational State Transfer. A software architecture where the client and server move through a series of state transitions based solely on the request from the client and the response from the server.
120 121	Results	A general term for the Samples, Events, and Condition contained in a ComponentStream as a response from a sample or current request.

122 123	Sample	A sample is a data point from within a continuous series of data points. An example of a Sample is the position of an axis.
124 125 126	Socket	When used concerning inter-process communication, it refers to a connection between two end-points (usually processes). Socket communication most often uses TCP/IP as the underlying protocol.
127 128	Stream	A collection of Events, Samples, and Condition organized by devices and components.
129	Service	An application that provides necessary functionality.
130	Tag	Used to reference an instance of an XML element.
131 132 133 134	TCP/IP	TCP/IP is the most prevalent stream-based protocol for inter-process communication. It is based on the IP stack (Internet Protocol) and provides the flow-control and reliable transmission layer on top of the IP routing infrastructure.
135 136	URI	Universal Resource Identifier. This is the official name for a web address as seen in the address bar of a browser.
137	UUID	Universally unique identifier.
138 139	XPath	XPath is a language for addressing parts of an XML Document. See the XPath specification for more information. http://www.w3.org/TR/xpath
140	XML	Extensible Markup Language. http://www.w3.org/XML/
141 142	XML Schema	The definition of the XML structure and vocabularies used in the XML Document.
143 144	XML Document	An instance of an XML Schema which has a single root XML element and conforms to the XML specification and schema.
145 146 147	XML Element	An element is the central building block of any XML Document. For example, in MTConnect® the Device XML element is specified as <pre> ></pre> <pre> Device</pre>
148 149 150 151	XML nmtoken	The data type for XML identifiers. It MUST start with a letter, an underscore "_" or a colon ":" and then it MUST be followed by a letter, a number, or one of the following ".", "-", "_", ":". An NMTOKEN cannot have any spaces or special characters.
152	2.2 Terminolo	ogy and Conventions
153 154	Please refer to Par Documentation co	rt 1 "Overview and Protocol" Section 2 for XML Terminology and onventions.

3 Extension to Part 1, Overview and Protocol 155 156 As documented in Part 1, additional queries will be added to the *Agent* to support the storage and retrieval of assets. There is more detail in Part 1; what follows is a summary of the protocol 157 158 additions: 159 Asset protocol: 160 Request an asset by id: 161 o url: http://example.com/asset/hh1 162 o Returns the MTConnectAssets document for asset hh1 163 • Request multiple assets by id: 164 o url: http://example.com/asset/hh1;cc;123;q5 165 Returns the MTConnectAssets document for asset hh1, cc, 123, and g5. 166 Request for all the assets in the *Agent*: 167 o url: http://example.com/assets o Returns all available MTConnect assets in the Agent. MTConnect MAY return a 168 169 limited set if there are too many asset records. The assets **MUST** be added to the beginning with the most recently modified assets. 170 Request for all assets of a given type in the *Agent*: 171 172 o url: http://example.com/assets?type=CuttingTool 173 Returns all available CuttingTool assets from the MTConnect Agent. 174 MTConnect MAY return a limited set if there are too many asset records. The assets **MUST** be added to the beginning with the most recently modified assets. 175 Request for all assets of a given type in the *Agent* up to a maximum count: 176 177 o url: 178 http://example.com/assets?type=CuttingTool&count=1000 179 o Returns all available CuttingTool assets from the MTConnect *Agent*. MTConnect **MUST** return up to 1000 assets beginning with the most recently 180 modified assets if they exist. 181 182 Request for all assets including assets that have been removed: 183 o url: 184 http://example.com/assets?type=CuttingTool&removed=tru 185 e 186 Returns all available CuttingTool assets from the MTConnect Agent. With

the removed flag, assets that have been removed but are included in the result set.

4 Extensions to Part 2, Components and Data Items

- This document will add the following data item types to support change notification when an
- asset is added or updated. The data item MUST be placed in the DataItems collection of the
- top level device. The device **MUST** be the device that is supplying the asset data.

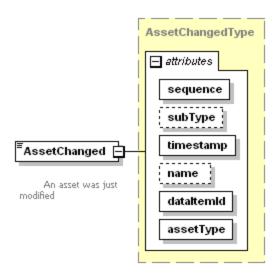
4.1 Data Item Types for EVENT Category

Data Item type/subtype	Description
	The value of the CDATA for the event MUST be the assetId of the asset that has been added or changed. There will not be a separate message for new assets.
ASSET_REMOVED	The value of the CDATA for the event MUST be the assetId of the asset that has been removed. The asset will still be visible if requested with the includeRemoved parameter as described in the protocol section. When assets
	are removed they are not moved to the beginning of the most recently modified list.

5 Extensions to Part 3, Streams, Events, Samples, and

Condition

- The associated modifications **MUST** be added to Part 3 to add the following event to the events
- 196 in the streams.


192

193

194

197 5.1 Extension to Events section 3.9

- The AssetChanged element extends the base Event type defined in *Part 3, Streams, Events*,
- 199 Samples, and Condition and adds the assetType attribute to the base Event. This new event
- 200 will signal whenever a new asset is added or the existing definition of an asset is updated. The
- asset Id is provide as the CDATA value and can be used to request the asset data from the Agent
- as described in *Part 1, Overview and Protocol*.
- The AssetRemoved element extends the base Event type defined in *Part 3, Streams, Events*,
- Samples, and Condition and adds the assetType attribute to the base Event. This new event
- will signal whenever an asset has been removed from the agent. The asset will still be available if
- requested if the removed=true argument is suplied. The asset Id is provide as the CDATA value
- and can be used to request the asset data from the Agent as described in Part 1, Overview and
- 208 Protocol.

209 Generated by XMLSpy www.altova.com

AssetChanged An asset has been added or modified. The **CDATA** for the AssetChanged element **MUST** be the assetId of the asset that has been modified.

5.1.1 Additional AssetChanged attributes:

Attribute	Description	Occurrence
assetType	The type of asset that changed	1

213

215216

210

211

212

214 Add diagram...

AssetRemoved An asset has been removed. The **CDATA** for the AssetRemoved element **MUST** be the assetId of the asset that has been removed.

217 5.1.2 Additional AssetChanged attributes:

Attribute	Description	Occurrence
assetType	The type of asset that changed	1

6 Assets 219

223

224

225

226

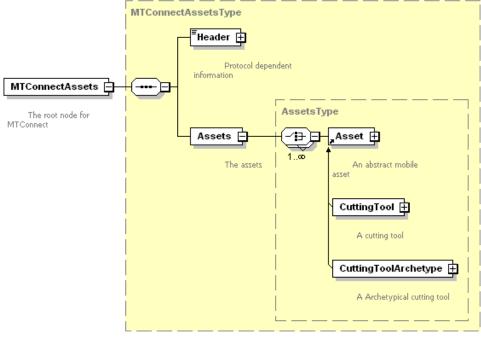
227

228

229

230

231


232

233

234

235

236

220 Generated by XMLSpy www.altova.com

221 Figure 1: Assets Schema 222

An Asset is something that is associated with the manufacturing process that is not a component of a device, can be removed without detriment to the function of the device, and can be associated with other devices during their lifecycle. An asset does not have computational capabilities, but may carry information in some media physically attached to the asset.

Concrete examples of Assets are things like Cutting Tools, Workholding Systems, and Fixtures. Part 4 of the MTConnect standard will concern itself with the modeling of these assets and the management and communication of asset data using MTConnect.

At the top level of the MTConnectAssets document we have a standard header as documented in Part 1: Overview and Protocol and one or more assets. Each asset is required to have an assetId that serves as a unique identifier of that asset. The id allows the application to request the asset data from the agent, as prescribed in Part 1.

In the remaining document, we will be discussing Cutting Tools as the first asset type covered by the standard. The cutting tool must have an assetId that differs from all the other assets tracked by this agent. There MUST never be more than one asset provided by MTConnect with the same asset Id in the same agent.

237

238

252

253

254

258

259

A. Bibliography

Engineering Industries Association. *EIA Standard - EIA-274-D*, Interchangeable Variable,
 Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically
 Controlled Machines. Washington, D.C. 1979.

Appendices

- 2. ISO TC 184/SC4/WG3 N1089. *ISO/DIS 10303-238*: Industrial automation systems and integration Product data representation and exchange Part 238: Application Protocols: Application interpreted model for computerized numerical controllers. Geneva, Switzerland, 2004.
- International Organization for Standardization. *ISO 14649*: Industrial automation systems and integration Physical device control Data model for computerized numerical controllers Part 10: General process data. Geneva, Switzerland, 2004.
- 4. International Organization for Standardization. *ISO 14649*: Industrial automation systems and integration Physical device control Data model for computerized numerical controllers Part 11: Process data for milling. Geneva, Switzerland, 2000.
 - 5. International Organization for Standardization. *ISO* 6983/1 Numerical Control of machines Program format and definition of address words Part 1: Data format for positioning, line and contouring control systems. Geneva, Switzerland, 1982.
- Electronic Industries Association. *ANSI/EIA-494-B-1992*, 32 Bit Binary CL (BCL) and 7
 Bit ASCII CL (ACL) Exchange Input Format for Numerically Controlled Machines.
 Washington, D.C. 1992.
 - 7. National Aerospace Standard. *Uniform Cutting Tests* NAS Series: Metal Cutting Equipment Specifications. Washington, D.C. 1969.
- 8. International Organization for Standardization. *ISO 10303-11*: 1994, Industrial automation systems and integration Product data representation and exchange Part 11: Description methods: The EXPRESS language reference manual. Geneva, Switzerland, 1994.
- 9. International Organization for Standardization. *ISO 10303-21*: 1996, Industrial automation systems and integration -- Product data representation and exchange -- Part 21: Implementation methods: Clear text encoding of the exchange structure. Geneva, Switzerland, 1996.
- 10. H.L. Horton, F.D. Jones, and E. Oberg. *Machinery's handbook*. Industrial Press, Inc. New York, 1984.
- 11. International Organization for Standardization. ISO 841-2001: Industrial automation
 systems and integration Numerical control of machines Coordinate systems and
 motion nomenclature. Geneva, Switzerland, 2001.

273 274	12. ASME B5.59-2 Version 9c: Data Specification for Properties of Machine Tools for Milling and Turning. 2005.
275 276	13. ASME/ANSI B5.54: Methods for Performance Evaluation of Computer Numerically Controlled Lathes and Turning Centers. 2005.
277 278	14. OPC Foundation. OPC Unified Architecture Specification, Part 1: Concepts Version 1.00. July 28, 2006.
279 280	15. International Organization for Standardization. <i>ISO 13399</i> : Cutting tool data representation and exchange. Geneva, Switzerland, 2000.
281	